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Problem Statement and Research Question

The Southern Ocean is a large component of the global carbon cycle, and
phytoplankton play a key role by converting CO2 to organic carbon, which can be
transported to the deep ocean. In the past, we have explored training a Maximum
Entropy (MaxEnt) model to predict species distributions (SD) in 2D [2]. However,
a drawback of this approach is that the MaxEnt modeling software only accepts 2D
raster layers as features. Therefore, we aim to model phytoplankton distribution
in the Southern Ocean in 3D using deep learning.

Research Questions. Can deep learning techniques improve upon the MaxEnt
SDM approach? How beneficial is it to model species distribution in 3D?

Species Distribution Models and Datasets

Figure: BSOSE environmental layers over summer months; Using averaged top 50 m depth

BSOSE: This dataset covers biogeochemical variables for the Southern Ocean
from 2013 to 2018. The five input features include temperature, salinity, oxygen,
nitrate, and chlorophyll.

(a) Species Occurence Map (b) Spatial Clustering for Validation

Figure: Data Preprocessing and Representation

PhytoBase: This dataset contains phytoplankton occurrence data. We focused
on the top 5 phytoplankton classes with the largest data points, totaling 36,000
presence points. The top 5 classes and their corresponding percent composition
as follows: (Bacillariophyceae: 54.9%, Dinophyceae: 22.0%, Prymnesiophyceae:
10.7%, Coccolithophyceae: 7.7%, and Cyanophyceae: 4.6%).

Proposed Deep Learning Method

Figure: Proposed CNN architecture

Input Image. The environmental structure around a precise location also
matters for accurate estimation [1]. Therefore, we use a 3D input tensor of
dimension 8x8x8 (or 16x16x16) around each location and for each feature.

Model Architecture. We used a CNN to encode the input image into a
feature vector, then applied a FFNN with a sigmoid activation for each species to
learn independent class probabilities. This approach reflects the co-existence of
multiple species at a given location. Additionally, we encode time (the month) as
a categorical variable to account for distribution shifts throughout the year.

CNN Module. We employed two different architectures:
▶ a simple 3-layer CNN based on 3D convolution (1.17 million parameters)
▶ a much larger 18 layer ResNet3D model [3] (33.16 million parameters)

Evaluation and Baseline Models

Baselines. We compared our approach to a Random Forest (RF) model, a
baseline MLP, and a biased random guess (BRG), using environmental features
at specific locations as input. We also trained models on 2D data to assess the
information gain from including depth.

Spatial Clustering. To address overfitting caused by spatial autocorrelation
from clustered ship survey data, we avoid using random train/test splits, which
can still bias results. Instead, we additionally employ geographic k-fold splits,
dividing the data into spatially defined clusters for train and test sets.

Results and Discussion

Classifier F1-score Balanced Accuracy Accuracy
Standard Validation (3D Data)

ResNet3D (8x8) 0.7238 0.6398 0.7310
CNN-SDM (8x8) 0.7660 0.6716 0.7715
ResNet3D (16x16) 0.7815 0.7196 0.7879
CNN-SDM (16x16) 0.7826 0.7162 0.7896

MLP 0.6112 0.4858 0.6510
RF 0.7302 0.6512 0.7344

Random (Biased) 0.3534 0.2122 0.3485
Spatial Validation (3D Data)

ResNet3D (8x8) 0.4372 0.3584 0.4975
CNN-SDM (8x8) 0.4694 0.3413 0.4979

MLP 0.3655 0.2673 0.4373
RF 0.3519 0.2533 0.4212

Random (Biased) 0.2782 0.2018 0.2909
Ablation Study (2D Data)

CNN-SDM (8x8) 0.7995 0.7342 0.8033
RF 0.80 0.74 0.8010

MaxEnt 0.7487 0.7601 0.7511

▶ Our CNN-based approach significantly outperforms other baseline methods.
▶ As expected, the results for a spatial train-test split are considerably worse,

as it is a more challenging task where the model must predict for unseen
regions.

▶ 2D data performs slightly better, likely due to avoiding sparsity from the
additional dimension.

Conclusion and Future Steps

▶ We showed that there is potential for species distribution modeling using
CNNs. However, data scarcity still denotes are huge issue which makes the
predictions ins some areas unreliable

▶ 3D data complicates training and may slightly reduce performance but
enables insights into species evolution with ocean depth.

▶ With more compute and data, CNNs most likely outperform other methods
by a large amount, justifying longer training times and compute expenses.

▶ With a high-performance CNN model in place, future research could focus
on identify which environmental features most influence the presence of
specific phytoplankton species.
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